Timely resource allocation in edge-assisted vehicular networks is essential for compute-intensive services such as autonomous driving and navigation. However, vehicle mobility leads to spatio-temporal unpredictability of resource demands, while real-time double auctions incur significant latency. To address these challenges, we propose a look-ahead contract-based auction framework that shifts decision-making from runtime to planning time. Our approach establishes N-step service contracts between edge servers (ESs) using demand forecasts and modified double auctions. The system operates in two stages: first, an LSTM-based prediction module forecasts multi-slot resource needs and determines ES roles (buyer or seller), after which a pre-double auction generates contracts specifying resource quantities, prices, and penalties. Second, these contracts are enforced in real time without rerunning auctions. The framework incorporates energy costs, transmission overhead, and contract breach risks into utility models, ensuring truthful, rational, and energy-efficient trading. Experiments on real-world (UTD19) and synthetic traces demonstrate that our method improves time efficiency, energy use, and social welfare compared with existing baselines.
翻译:暂无翻译