Design for low latency networking is essential for tomorrow's interactive applications, but it is essential to deploy incrementally and universally at the network's last mile. While wired broadband ISPs are rolling out the leading queue occupancy signaling mechanisms, the cellular Radio Access Network (RAN), another important last mile to many users, lags behind these efforts. This paper proposes a new RAN design, L4Span, that abstracts the complexities of RAN queueing in a simple interface, thus tying the queue state of the RAN to end-to-end low-latency signaling all the way back to the content server. At millisecond-level timescales, L4Span predicts the RAN's queuing occupancy and performs ECN marking for both low-latency and classic flows. L4Span is lightweight, requiring minimal RAN modifications, and remains 3GPP and O-RAN compliant for maximum ease of deployment. We implement a prototype on the srsRAN open-source software in C++. Our evaluation compares the performance of low-latency as well as classic flows with or without the deployment of L4Span in various wireless channel conditions. Results show that L4Span reduces the one-way delay of both low-latency and classic flows by up to 98 %, while simultaneously maintaining near line-rate throughput. The code is available at https://github.com/PrincetonUniversity/L4Span.
翻译:暂无翻译