This paper introduces and studies a new model of computation called an Alternating Automatic Register Machine (AARM). An AARM possesses the basic features of a conventional register machine and an alternating Turing machine, but can carry out computations using bounded automatic relations in a single step. One finding is that an AARM can recognise some NP-complete problems, including SAT (using a particular coding), in $\log^* n + O(1)$ steps. On the other hand, if all problems in P can be solved by an AARM in $O(\log^*n)$ rounds, then $\text{P} \subset \text{PSPACE}$. Furthermore, we study an even more computationally powerful machine, called a Polynomial-Size Padded Alternating Automatic Register Machine (PAARM), which allows the input to be padded with a polynomial-size string. It is shown that the polynomial hierarchy can be characterised as the languages that are recognised by a PAARM in $\log^*n + O(1)$ steps. These results illustrate the power of alternation when combined with computations involving automatic relations, and uncover a finer gradation between known complexity classes.
翻译:本文介绍并研究一种新的计算模式,称为“替代自动注册机 ” (ARM) 。 AARM 拥有常规注册机和交替图灵机的基本特征,但可以在一个步骤中使用约束自动关系进行计算。一个发现是, AARM 能够识别一些NP-完整的问题,包括 SAT(使用特定编码), 以$\log ⁇ n+O(1)美元为单位。另一方面,如果P 中的所有问题都可以用美元(log ⁇ n) 圆桌的AARM 解决, 然后$\ text{P}\subset\ text{PSPACE} 。此外,我们研究的是一个甚至更具有计算力的机器,称为“聚合-Sizizize 化加代谢自动注册机(PAARM), 使输入能够与聚度大小的字符串加添。 显示, 多元等级的等级可以以美元\log ⁇ n + O(1)美元 级的PARAM 识别的语言为特征。这些结果说明了在自动计算过程中已知的等级和等级之间变异的复杂程度。