In recent years, the power demonstrated by Machine Learning (ML) has increasingly attracted the interest of the optimization community that is starting to leverage ML for enhancing and automating the design of algorithms. One combinatorial optimization problem recently tackled with ML is the Job Shop scheduling Problem (JSP). Most of the works on the JSP using ML focus on Deep Reinforcement Learning (DRL), and only a few of them leverage supervised learning techniques. The recurrent reasons for avoiding supervised learning seem to be the difficulty in casting the right learning task, i.e., what is meaningful to predict, and how to obtain labels. Therefore, we first propose a novel supervised learning task that aims at predicting the quality of machine permutations. Then, we design an original methodology to estimate this quality, and we use these estimations to create an accurate sequential deep learning model (binary accuracy above 95%). Finally, we empirically demonstrate the value of predicting the quality of machine permutations by enhancing the performance of a simple Tabu Search algorithm inspired by the works in the literature.
翻译:近年来,机器学习(ML)所展示的力量日益吸引优化社区的兴趣,后者开始利用 ML 来提升和自动化算法的设计。最近与ML处理的一个组合优化问题是工作商店排期问题(JSP ) 。JSP 使用 ML 的工程大多侧重于深层强化学习(DRL ), 只有少数人利用受监督的学习技巧。 避免受监督学习的经常性原因似乎是难于完成正确的学习任务, 即什么是有意义的预测, 以及如何获得标签。 因此, 我们首先提出一个新的有监督的学习任务, 目的是预测机器变换的质量。 然后, 我们设计了一个原始的方法来估计这种质量, 我们用这些估算来创建准确的连续深层次学习模型( 95% 以上的二进制精度 ) 。 最后, 我们从经验上证明通过提高由文献作品启发的简单塔布搜索算法的性能来预测机器变色的质量的价值。