The main purpose of this article is to show that the numerical range of a linear pencil $\lambda A + B$ is equal to $\mathbb{C}$ if and only if $0$ belongs to the convex hull of the joint numerical range of $A$ and $B$. We also prove that if the numerical range of a linear pencil $\lambda A + B$ is equal to $\mathbb{C}$ and $A + A^*, B + B^* \geq 0$, then $A$ and $B$ have a common isotropic vector. Moreover, we improve the classical result which describes Hermitian linear pencils.
翻译:本篇文章的主要目的是显示线性铅笔$\lambda A+B$的数值范围等于$\mathbb{C}美元,如果而且只有0.美元属于美元和B$这一联合数字范围的圆柱体。我们还证明,如果线性铅笔$\lambda A+B$的数值范围等于$\mathbb{C}美元和$A+A ⁇,B+B ⁇ +Geq 0美元,那么美元和B$有一个共同的异地媒介。此外,我们改进了描述Hermitian线性铅笔的经典结果。