We present a new method for multiclass thresholding of a histogram which is based on the nonparametric Kernel Density (KD) estimation, where the unknown parameters of the KD estimate are defined using the Expectation-Maximization (EM) iterations. The method compares the number of extracted minima of the KD estimate with the number of the requested clusters minus one. If these numbers match, the algorithm returns positions of the minima as the threshold values, otherwise, the method gradually decreases/increases the kernel bandwidth until the numbers match. We verify the method using synthetic histograms with known threshold values and using the histogram of real X-ray computed tomography images. After thresholding of the real histogram, we estimated the porosity of the sample and compare it with the direct experimental measurements. The comparison shows the meaningfulness of the thresholding.
翻译:我们提出了一个新的直方图多级阈值方法,该方法基于非参数心核密度(KD)估计,其中KD估计的未知参数是使用期望-最大度(EM)迭代来定义的。该方法将提取的KD估计的微型数与请求的组数除以1。如果这些数字匹配,算法将微型值的位置作为阈值返回,否则,该方法将逐渐减少/增加内核带宽,直到数字匹配。我们用具有已知阈值的合成直方图,并利用实际X射线计算透视图像的直方图来核查该方法。在切入实际直方图后,我们估计了样本的孔度,并将其与直接实验测量进行比较。比较显示了阈值的有意义的程度。