Electrical impedance tomography (EIT) is a noninvasive medical imaging modality utilizing the current-density/voltage data measured on the surface of the subject. Calder\'on's method is a relatively recent EIT imaging algorithm that is non-iterative, fast, and capable of reconstructing complex-valued electric impedances. However, due to the regularization via low-pass filtering and linearization, the reconstructed images suffer from severe blurring and underestimation of the exact conductivity values. In this work, we develop an enhanced version of Calder\'on's method, using convolution neural networks (i.e., U-net) via a postprocessing step. Specifically, we learn a U-net to postprocess the EIT images generated by Calder\'on's method so as to have better resolutions and more accurate estimates of conductivity values. We simulate chest configurations with which we generate the current-density/voltage boundary measurements and the corresponding reconstructed images by Calder\'on's method. With the paired training data, we learn the neural network and evaluate its performance on real tank measurement data. The experimental results indicate that the proposed approach indeed provides a fast and direct (complex-valued) impedance tomography imaging technique, and substantially improves the capability of the standard Calder\'on's method.


翻译:电阻抗断层成像(EIT)是一种利用受试者表面上测量的电流密度/电压数据的非侵入性医学成像模式。卡尔德隆方法是一种相对较新的EIT成像算法,它是非迭代的,快速的,并能够重建复杂的电阻抗值。然而,由于正则化使用低通滤波和线性化,重建的图像遭受严重的模糊和低估确切电导率值。在这项工作中,我们开发了卡尔德隆方法的增强版本,使用卷积神经网络(即U-net)通过后处理步骤。具体来说,我们学习了一个U-net,通过卡尔德隆方法生成的EIT图像进行后处理,以具有更好的分辨率和更准确的电导率值估计。我们模拟胸部配置,生成当前密度/电压边界测量和相应的卡尔德隆方法重建图像。通过配对的训练数据,我们学习神经网络并在实际测量数据上评估其性能。实验结果表明,提出的方法提供了一种快速和直接(复值)的电阻抗断层成像技术,并且大大改善了标准卡尔德隆方法的能力。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
23+阅读 · 2022年2月24日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
VIP会员
相关VIP内容
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员