项目名称: 简便快速的纳米分辨中能X射线成像相位提取方法

项目编号: No.11305173

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 高昆

作者单位: 中国科学技术大学

项目金额: 29万元

中文摘要: 同步辐射X射线全场显微术能够对样品进行无损、三维、纳米分辨的成像,在材料、生命科学等领域、特别是完整细胞显微术方面有重要应用。但是传统软X射线显微术的焦深有限,不适用于直径大于5微米的细胞;另一方面,硬X射线显微术虽然焦深大,但是因其穿透力太强而对生物样品的成像衬度非常低。新近提出的中能X射线泽尼克显微术很好地弥补了两者的不足,能够对几十微米大小的细胞进行高衬度显微成像。本课题拟针对中能泽尼克相衬显微术中存在的相位提取问题,通过引入Nomarski微分干涉的思想,提出基于X射线双频光栅的微分干涉相衬成像方案。相比于传统的泽尼克相衬方案和其他定量相衬方案,本方案能够更为简便、快速地获取相位与吸收信息,进而为大细胞的折射率三维重建提供准确的数据。本课题的研究将为国内众多学科领域、特别是生命科学,提供更为方便准确的纳米形貌表征手段。

中文关键词: x射线显微术;相衬成像;微分干涉成像;相位提取;

英文摘要: Synchrotron radiation based full-field x-ray microscopy has significant applications in materials and cell imaging thanks to its non-destructive nanometer-resolution 3D imaging ability. As an important tool, however, conventional soft x-ray microscopy has a quite limited focal depth, therefore is inappropriate for imaging cells larger than 5 um. Another important tool, hard x-ray microscopy, does have a rather large focal depth, but inevitably accompanied with very low image contrast due to the high penetration power of hard x-rays to biological specimens. Recently, a novel x-ray microscopy technique has been suggested with both an acceptable large focal depth as well as a high contrast to biological specimens, using Zernike phase contrast mechanism with intermidiate enery x-rays. This NSFC proposal aims at solving the phase retrieval problem possibly existed in intermediate enery x-ray Zernike microscopy by introducing the idea of Nomarski differential interferential microscopy, therefore offers an improved differential phase contrast imaging method. Compared with conventional x-ray Zernike phase contrast method and other existing quantitative phase retrieval methods, the suggested method can retrieve accurate phase and absorption information in a single shot, therefore provides better data for 3D tomography re

英文关键词: x-ray microscopy;phase contrast imaging;differential imaging;phase retrieval;

成为VIP会员查看完整内容
0

相关内容

【博士论文】多视光场光线空间几何模型研究
专知会员服务
21+阅读 · 2021年12月6日
专知会员服务
31+阅读 · 2021年7月26日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
19+阅读 · 2021年5月1日
专知会员服务
33+阅读 · 2021年4月23日
专知会员服务
94+阅读 · 2021年2月6日
专知会员服务
26+阅读 · 2021年1月29日
基于深度学习的小目标检测方法综述
专知
1+阅读 · 2021年4月29日
ICCV2019 | 高精度,高效率点云三维重建 PointMVSNet
计算机视觉life
23+阅读 · 2019年9月5日
一种小目标检测中有效的数据增强方法
极市平台
117+阅读 · 2019年3月23日
红外弱小目标处理研究获进展
中科院之声
17+阅读 · 2017年11月19日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
64+阅读 · 2021年6月18日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
10+阅读 · 2020年11月26日
Arxiv
126+阅读 · 2020年9月6日
小贴士
相关VIP内容
【博士论文】多视光场光线空间几何模型研究
专知会员服务
21+阅读 · 2021年12月6日
专知会员服务
31+阅读 · 2021年7月26日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
19+阅读 · 2021年5月1日
专知会员服务
33+阅读 · 2021年4月23日
专知会员服务
94+阅读 · 2021年2月6日
专知会员服务
26+阅读 · 2021年1月29日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员