The Exponential-family Random Graph Model (ERGM) is a powerful statistical model to represent the complicated structural dependencies of a binary network observed at a single time point. However, regarding dynamic valued networks whose observations are matrices of counts that evolve over time, the development of the ERGM framework is still in its infancy. We propose a Partially Separable Temporal ERGM (PST ERGM) for dynamic valued networks to facilitate the modeling of dyad value augmentation and dyad value diminution. Our parameter learning algorithms inherit state-of-the-art estimation techniques to approximate the maximum likelihood, by drawing Markov chain Monte Carlo (MCMC) samples conditioning on the network from the previous time step. We demonstrate the ability of the proposed model to interpret network dynamics and forecast temporal trends with real data.
翻译:指数-家庭随机图模型(ERGM)是一个强大的统计模型,它代表了在某一时间点观测到的二进制网络的复杂结构依赖性;然而,关于具有生命价值的网络,其观测是随时间变化而变化的计数矩阵,ERGM框架的开发仍处于初始阶段;我们建议为动态的有生命价值的网络提供一个部分分离的时温ERGM(PST ERGM),以便利模拟变压值增减值和减值。我们的参数学习算法继承了最先进的估计技术,以近似于最大的可能性,从以往的时序中将Markov链 Monte Carlo(MCM)样本置于网络上。我们展示了拟议模型以真实数据解释网络动态和预测时间趋势的能力。