Flying animals possess highly complex physical characteristics and are capable of performing agile maneuvers using their wings. The flapping wings generate complex wake structures that influence the aerodynamic forces, which can be difficult to model. While it is possible to model these forces using fluid-structure interaction, it is very computationally expensive and difficult to formulate. In this paper, we follow a simpler approach by deriving the aerodynamic forces using a relatively small number of states and presenting them in a simple state-space form. The formulation utilizes Prandtl's lifting line theory and Wagner's function to determine the unsteady aerodynamic forces acting on the wing in a simulation, which then are compared to experimental data of the bat-inspired robot called the Aerobat. The simulated trailing-edge vortex shedding can be evaluated from this model, which then can be analyzed for a wake-based gait design approach to improve the aerodynamic performance of the robot.
翻译:飞行动物具有高度复杂的物理特性,并且能够使用翅膀进行敏捷的操控。 扇形翅膀产生影响空气动力的复杂后醒结构, 这很难模拟。 虽然使用流体结构相互作用来模拟这些力量是可能的, 但是在计算上非常昂贵, 也很难形成。 在本文中, 我们采用更简单的方法, 利用相对较少的状态来推断空气动力, 并以简单的状态空间形式展示这些力量。 配方利用普兰德特尔的升线理论和瓦格纳的功能来确定在模拟中在机翼上活动的不稳定的空气动力, 然后将这种结构与蝙蝠启发机器人的实验数据作比较, 称为Aerobat。 模拟的尾端螺旋悬浮格可以从这个模型中加以评估, 然后可以用来分析一个基于休醒的游戏设计方法, 以改进机器人的空气动力性能。