This paper presents an efficient and safe method to avoid static and dynamic obstacles based on LiDAR. First, point cloud is used to generate a real-time local grid map for obstacle detection. Then, obstacles are clustered by DBSCAN algorithm and enclosed with minimum bounding ellipses (MBEs). In addition, data association is conducted to match each MBE with the obstacle in the current frame. Considering MBE as an observation, Kalman filter (KF) is used to estimate and predict the motion state of the obstacle. In this way, the trajectory of each obstacle in the forward time domain can be parameterized as a set of ellipses. Due to the uncertainty of the MBE, the semi-major and semi-minor axes of the parameterized ellipse are extended to ensure safety. We extend the traditional Control Barrier Function (CBF) and propose Dynamic Control Barrier Function (D-CBF). We combine D-CBF with Model Predictive Control (MPC) to implement safety-critical dynamic obstacle avoidance. Experiments in simulated and real scenarios are conducted to verify the effectiveness of our algorithm. The source code is released for the reference of the community.
翻译:本文介绍了一种高效而安全的方法,以避免基于LIDAR的静态和动态障碍。 首先,点云用于生成实时本地网格图,以发现障碍。然后,障碍由DBSCAN算法分组,并附以最小约束椭圆(MBE),此外,还进行了数据联系,使每个MBE与当前框架中的障碍相匹配。将MBE作为观察对象,Kalman过滤器(KF)用来估计和预测障碍的动静状态。这样,前时域中每个障碍的轨迹可以作为一套省略图进行参数化。由于MBE的不确定性,参数化椭圆的半主轴和半最小轴可以扩大,以确保安全。我们扩展了传统的控制屏障功能,并提出了动态控制屏障功能(D-CBFF)。我们将D-CBFF与模型预测控制(MPC)结合起来,以实施安全临界动态障碍的避免。在模拟和真实情况下进行实验,以核实我们的算法的有效性。源代码为社区参考而发布。