Recent years have witnessed growing interest in the application of deep neural networks (DNNs) for receiver design, which can potentially be applied in complex environments without relying on knowledge of the channel model. However, the dynamic nature of communication channels often leads to rapid distribution shifts, which may require periodically retraining. This paper formulates a data-efficient two-stage training method that facilitates rapid online adaptation. Our training mechanism uses a predictive meta-learning scheme to train rapidly from data corresponding to both current and past channel realizations. Our method is applicable to any deep neural network (DNN)-based receiver, and does not require transmission of new pilot data for training. To illustrate the proposed approach, we study DNN-aided receivers that utilize an interpretable model-based architecture, and introduce a modular training strategy based on predictive meta-learning. We demonstrate our techniques in simulations on a synthetic linear channel, a synthetic non-linear channel, and a COST 2100 channel. Our results demonstrate that the proposed online training scheme allows receivers to outperform previous techniques based on self-supervision and joint-learning by a margin of up to 2.5 dB in coded bit error rate in rapidly-varying scenarios.


翻译:近些年来,人们日益关注深神经网络(DNN)应用于接收器设计,这种网络在不依赖频道模型知识的情况下有可能在复杂的环境中应用,但是,通信渠道的动态性质往往导致快速分布变化,可能需要定期再培训。本文制定了一种数据效率高的两阶段培训方法,便于在线快速适应。我们的培训机制使用一种预测元学习计划,根据与当前和以往实现频道数据相对应的数据进行快速培训。我们的方法适用于任何深神经网络(DNN)的接收器,不需要为培训传输新的试点数据。为了说明拟议的方法,我们研究DNNN辅助接收器,该接收器使用一种可解释的模型结构,并采用基于预测元学习的模块化培训战略。我们在合成线性通道、合成非线性通道和COST 2100频道的模拟中展示了我们的技术。我们的结果表明,拟议的在线培训计划允许接收器超越基于自我监控和联合学习的以往技术,在快速变换的版本中以2.5 dB 位位位位误差。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
14+阅读 · 2019年9月11日
VIP会员
相关VIP内容
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员