LiDAR odometry (LO) describes the task of finding an alignment of subsequent LiDAR point clouds. This alignment can be used to estimate the motion of the platform where the LiDAR sensor is mounted on. Currently, on the well-known KITTI Vision Benchmark Suite state-of-the-art algorithms are non-learning approaches. We propose a network architecture that learns LO by directly processing 3D point clouds. It is trained on the KITTI dataset in an end-to-end manner without the necessity of pre-defining corresponding pairs of points. An evaluation on the KITTI Vision Benchmark Suite shows similar performance to a previously published work, DeepCLR [1], even though our model uses only around 3.56% of the number of network parameters thereof. Furthermore, a plane point extraction is applied which leads to a marginal performance decrease while simultaneously reducing the input size by up to 50%.
翻译:LiDAR odology (LO) 描述对随后的 LiDAR 点云进行对齐的任务。 此对齐可用于估计安装 LiDAR 传感器的平台的动作。 目前, 在著名的 KITTI 愿景基准套件上, 最新的最新算法是非学习方法。 我们提议了一个通过直接处理 3D 点云来学习LO的网络架构。 它在 KITTI 数据集上进行端对端培训, 无需预先确定相应的对点。 KITTI 愿景基准套件的评估显示, 其性能与以前出版的工作DeepCLR [1] 相似, 尽管我们的模型只使用了其中网络参数数量的3.56%左右。 此外, 平点提取还导致边际性能下降, 同时将输入尺寸降低到50% 。