We introduce Joint Multidimensional Scaling, a novel approach for unsupervised manifold alignment, which maps datasets from two different domains, without any known correspondences between data instances across the datasets, to a common low-dimensional Euclidean space. Our approach integrates Multidimensional Scaling (MDS) and Wasserstein Procrustes analysis into a joint optimization problem to simultaneously generate isometric embeddings of data and learn correspondences between instances from two different datasets, while only requiring intra-dataset pairwise dissimilarities as input. This unique characteristic makes our approach applicable to datasets without access to the input features, such as solving the inexact graph matching problem. We propose an alternating optimization scheme to solve the problem that can fully benefit from the optimization techniques for MDS and Wasserstein Procrustes. We demonstrate the effectiveness of our approach in several applications, including joint visualization of two datasets, unsupervised heterogeneous domain adaptation, graph matching, and protein structure alignment.
翻译:我们引入了“联合多层面增强”这一新的方法,用于不受监督的多重校正,将两个不同领域的数据集绘制成一个共同的低维欧几里德空间,而各数据集之间没有已知的对应关系。我们的方法将“多层面增强”(MDS)和“瓦塞斯坦·普罗克鲁斯”分析整合成一个联合优化问题,以同时生成数据中的等分嵌和从两个不同的数据集中学习实例之间的对应关系,同时只要求将数据集内部的对等差异作为输入。这一独特特征使得我们的方法适用于数据集,而没有访问输入特征,例如解决不完全的图表匹配问题。我们提议了一个交替优化方案,以解决能够从“MDS”和“瓦塞斯坦·普罗克鲁斯”优化技术充分受益的问题。我们在若干应用中展示了我们的方法的有效性,包括两个数据集的联合可视化、非超强的多元域适应、图表匹配和蛋白质结构的校准。