While the quantum query complexity of $k$-distinctness is known to be $O\left(n^{3/4-1/4(2^k-1)}\right)$ for any constant $k \geq 4$, the best previous upper bound on the time complexity was $\widetilde{O}\left(n^{1-1/k}\right)$. We give a new upper bound of $\widetilde{O}\left(n^{3/4-1/4(2^k-1)}\right)$ on the time complexity, matching the query complexity up to polylogarithmic factors. In order to achieve this upper bound, we give a new technique for designing quantum walk search algorithms, which is an extension of the electric network framework. We also show how to solve the welded trees problem in $O(n)$ queries and $O(n^2)$ time using this new technique, showing that the new quantum walk framework can achieve exponential speedups.
翻译:虽然已知美元分辨的量子查询复杂性为$Oleft( n ⁇ 3/4-1/4 (2 ⁇ k-1) {right) $O\left (n ⁇ 3/4-1/4 (2 ⁇ k-1)}}right)$, 任何恒定的 $k\ geq 4 $, 但时间复杂性上前最好的上限是 $\ loblete{O ⁇ 1-1/k ⁇ right (n ⁇ 1-1/k ⁇ right)$。 在时间复杂性上我们给$\ lobletde{O ⁇ 3/4-1/4 (2 ⁇ k-1)\right(right)$新的上限, 匹配质询复杂性与多元性因素。 为了达到这一上限, 我们给出了设计量子漫步算算算法的新技术, 这是电网框架的延伸。 我们还展示了如何用$(n) 查询和$O( $%2) 解决焊接的树木问题, 使用这种新技术, 显示新的量步图框架可以实现指数加速。