Let $P$ be a bounded polyhedron defined as the intersection of the non-negative orthant ${\Bbb R}^n_+$ and an affine subspace of codimension $m$ in ${\Bbb R}^n$. We show that a simple and computationally efficient formula approximates the volume of $P$ within a factor of $\gamma^m$, where $\gamma >0$ is an absolute constant. The formula provides the best known estimate for the volume of transportation polytopes from a wide family.
翻译:让 $P 成为一条捆绑的聚希德龙, 定义为非负性或非负性 $\ bb R ⁇ n ⁇ $ 和 折叠式子空间的交叉点, 以$\ bbR ⁇ n$ 为单位。 我们显示, 一个简单且计算高效的公式, 在 $\ gamma $ > 0$ 为绝对常数的乘数内, 接近 $P$ 的体积。 该公式为来自大家族的运输多面体量提供了最已知的估计值 。