In $d$ dimensions, approximating an arbitrary function oscillating with frequency $\lesssim k$ requires $\sim k^d$ degrees of freedom. A numerical method for solving the Helmholtz equation (with wavenumber $k$) suffers from the pollution effect if, as $k\to \infty$, the total number of degrees of freedom needed to maintain accuracy grows faster than this natural threshold. While the $h$-version of the finite element method (FEM) (where accuracy is increased by decreasing the meshwidth $h$ and keeping the polynomial degree $p$ fixed) suffers from the pollution effect, the celebrated papers [Melenk, Sauter 2010], [Melenk, Sauter 2011], [Esterhazy, Melenk 2012], and [Melenk, Parsania, Sauter 2013] showed that the $hp$-FEM (where accuracy is increased by decreasing the meshwidth $h$ and increasing the polynomial degree $p$) applied to a variety of constant-coefficient Helmholtz problems does not suffer from the pollution effect. The heart of the proofs of these results is a PDE result splitting the solution of the Helmholtz equation into "high" and "low" frequency components. The main novelty of the present paper is that we prove this splitting for the constant-coefficient Helmholtz equation in full-space (i.e., in $\mathbb{R}^d$) using only integration by parts and elementary properties of the Fourier transform (this is contrast to the proof for this set-up in [Melenk, Sauter 2010] which uses somewhat-involved bounds on Bessel and Hankel functions). We combine this splitting with (i) standard arguments about convergence of the FEM applied to the Helmholtz equation (the so-called "Schatz argument", which we reproduce here) and (ii) polynomial-approximation results (which we quote from the literature without proof) to give a simple proof that the $hp$-FEM does not suffer from the pollution effect for the constant-coefficient full-space Helmholtz equation.
翻译:在 $d美元 维度中, 类似任意的功能以频度振荡 $\ lassm k$, 需要 $sim 平流度自由度。 解决 Helmholtz 方程式( 以波数 $ 美元 美元 ) 的数字方法受到污染效应的影响, 如果以美元计, 维持准确性所需的自由总量比这个自然阈值增长更快 。 限制元素法( FEM) 的转化 美元 ( 平流率 $ 美元 ) ( 平流率 和保持 常数 美元 固定自由度自由度 ) 。 平流 平流 平流- 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流