As a traditional and widely-adopted mortality rate projection technique, by representing the log mortality rate as a simple bilinear form $\log(m_{x,t})=a_x+b_xk_t$. The Lee-Carter model has been extensively studied throughout the past 30 years, however, the performance of the model in the presence of outliers has been paid little attention, particularly for the parameter estimation of $b_x$. In this paper, we propose a robust estimation method for Lee-Carter model by formulating it as a probabilistic principal component analysis (PPCA) with multivariate $t$-distributions, and an efficient expectation-maximization (EM) algorithm for implementation. The advantages of the method are threefold. It yields significantly more robust estimates of both $b_x$ and $k_t$, preserves the fundamental interpretation for $b_x$ as the first principal component as in the traditional approach and is flexible to be integrated into other existing time series models for $k_t$. The parameter uncertainties are examined by adopting a standard residual bootstrap. A simulation study based on Human Mortality Database shows superior performance of the proposed model compared to other conventional approaches.


翻译:作为传统和广泛采用的死亡率预测技术,过去30年来对李卡特模型进行了广泛研究,但该模型在有外部值的情况下的性能很少受到重视,特别是在参数估算方面,特别是在x美元方面。在本文件中,我们提议对李卡特模型采用一种稳健的估计方法,将Lee-Carter模型作为一种简单的双线表($log(m ⁇ x,t})=a_x+b_xk_t$美元)的概率主要组成部分分析(PPCA)和高效的预期-最大化算法来进行实施。该方法的优点是三重,但该模型在有外部值的情况下的性能估计大得多,特别是在参数估算值为$b_x美元方面。在本文件中,我们提议对Lee-Carter模型采用一种稳健的估算方法,将它作为美元的其他现有时间序列模型(PPPCA),通过采用标准的残余值模型来审查参数的不确定性。根据常规数据库进行的一项模拟研究,将人类死亡率与其他模型进行比较。

0
下载
关闭预览

相关内容

专知会员服务
162+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月14日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员