Despite the technological advancements in the transportation sector, the industry continues to grapple with increasing energy consumption and vehicular emissions, which intensify environmental degradation and climate change. The inefficient management of traffic flow, the underutilization of transport network interconnectivity, and the limited implementation of artificial intelligence (AI)-driven predictive models pose significant challenges to achieving energy efficiency and emission reduction. Thus, there is a timely and critical need for an integrated, sophisticated approach that leverages intelligent transportation systems (ITSs) and AI for energy conservation and emission reduction. In this paper, we explore the role of ITSs and AI in future enhanced energy and emission reduction (EER). More specifically, we discuss the impact of sensors at different levels of ITS on improving EER. We also investigate the potential networking connections in ITSs and provide an illustration of how they improve EER. Finally, we discuss potential AI services for improved EER in the future. The findings discussed in this paper will contribute to the ongoing discussion about the vital role of ITSs and AI applications in addressing the challenges associated with achieving energy savings and emission reductions in the transportation sector. Additionally, it will provide insights for policymakers and industry professionals to enable them to develop policies and implementation plans for the integration of ITSs and AI technologies in the transportation sector.
翻译:暂无翻译