We consider the single-item interdependent value setting, where there is a monopolist, $n$ buyers, and each buyer has a private signal $s_i$ describing a piece of information about the item. Each bidder $i$ also has a valuation function $v_i(s_1,\ldots,s_n)$ mapping the (private) signals of all buyers to a positive real number representing their value for the item. This setting captures scenarios where the item's information is asymmetric or dispersed among agents, such as in competitions for oil drilling rights, or in auctions for art pieces. Due to the increased complexity of this model compared to standard private values, it is generally assumed that each bidder's valuation function $v_i$ is public knowledge. But in many situations, the seller may not know how a bidder aggregates signals into a valuation. In this paper, we design mechanisms that guarantee approximately-optimal social welfare while satisfying ex-post incentive compatibility and individual rationality for the case where the valuation functions are private to the bidders. When the valuations are public, it is possible for optimal social welfare to be attained by a deterministic mechanism under a single-crossing condition. In contrast, when the valuations are the bidders' private information, we show that no finite bound can be achieved by any deterministic mechanism even under single-crossing. Moreover, no randomized mechanism can guarantee better than an $n$-approximation. We thus consider valuation functions that are submodular over signals (SOS), introduced in the context of combinatorial auctions in a recent breakthrough paper by Eden et al. [EC'19]. Our main result is an $O(\log^2 n)$-approximation for buyers with private signals and valuations under the SOS condition. We also give a tight $\Theta(k)$-approximation for the case each agent's valuation depends on at most $k$ other signals even for unknown $k$.
翻译:我们考虑单项相互依存的价值设置, 在单项、 美元买家和每个买家都有一个私人信号 美元 美元 美元 来描述关于该物品的信息。 每个投标人美元 也有一个估值函数 $_i (s_ 1,\ ldots,s_n) 美元 绘制所有买家的( 私人) 真实数字的( 私人) 信号以正数表示该物品的价值。 这个设置可以捕捉该物品的信息在代理商之间不对称或分散的情景, 例如石油钻井权的竞争, 或者艺术品拍卖。 由于该模型与标准的私人价值相比, 美元 美元 美元 美元 美元 美元 的比较复杂性, 通常假设每个投标人的估值值 $ 美元 美元 是公共的。 在许多情况下, 卖方可能不知道投标人如何将信号汇总成一个正值 。 在本文中, 我们设计机制, 在满足事后激励的兼容性, 个人对投标人的估价功能是私人的。 当估值是公开时, 我们有可能通过一种最优化的 美元 美元 货币 货币 的货币 货币 货币 货币 的估值机制下, 在单一的货币 的货币 的货币机制下, 在一种确定性机制下, 任何的货币 的货币的货币的货币 也可以 。