We consider the single-item interdependent value setting, where there is a monopolist, $n$ buyers, and each buyer has a private signal $s_i$ describing a piece of information about the item. Each bidder $i$ also has a valuation function $v_i(s_1,\ldots,s_n)$ mapping the (private) signals of all buyers to a positive real number representing their value for the item. This setting captures scenarios where the item's information is asymmetric or dispersed among agents, such as in competitions for oil drilling rights, or in auctions for art pieces. Due to the increased complexity of this model compared to standard private values, it is generally assumed that each bidder's valuation function $v_i$ is public knowledge. But in many situations, the seller may not know how a bidder aggregates signals into a valuation. In this paper, we design mechanisms that guarantee approximately-optimal social welfare while satisfying ex-post incentive compatibility and individual rationality for the case where the valuation functions are private to the bidders. When the valuations are public, it is possible for optimal social welfare to be attained by a deterministic mechanism under a single-crossing condition. In contrast, when the valuations are the bidders' private information, we show that no finite bound can be achieved by any deterministic mechanism even under single-crossing. Moreover, no randomized mechanism can guarantee better than an $n$-approximation. We thus consider valuation functions that are submodular over signals (SOS), introduced in the context of combinatorial auctions in a recent breakthrough paper by Eden et al. [EC'19]. Our main result is an $O(\log^2 n)$-approximation for buyers with private signals and valuations under the SOS condition. We also give a tight $\Theta(k)$-approximation for the case each agent's valuation depends on at most $k$ other signals even for unknown $k$.


翻译:我们考虑单项相互依存的价值设置, 在单项、 美元买家和每个买家都有一个私人信号 美元 美元 美元 来描述关于该物品的信息。 每个投标人美元 也有一个估值函数 $_i (s_ 1,\ ldots,s_n) 美元 绘制所有买家的( 私人) 真实数字的( 私人) 信号以正数表示该物品的价值。 这个设置可以捕捉该物品的信息在代理商之间不对称或分散的情景, 例如石油钻井权的竞争, 或者艺术品拍卖。 由于该模型与标准的私人价值相比, 美元 美元 美元 美元 美元 美元 的比较复杂性, 通常假设每个投标人的估值值 $ 美元 美元 是公共的。 在许多情况下, 卖方可能不知道投标人如何将信号汇总成一个正值 。 在本文中, 我们设计机制, 在满足事后激励的兼容性, 个人对投标人的估价功能是私人的。 当估值是公开时, 我们有可能通过一种最优化的 美元 美元 货币 货币 的货币 货币 货币 货币 的估值机制下, 在单一的货币 的货币 的货币机制下, 在一种确定性机制下, 任何的货币 的货币的货币的货币 也可以 。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
40+阅读 · 2019年10月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Arxiv
30+阅读 · 2021年7月7日
Generating Fact Checking Explanations
Arxiv
9+阅读 · 2020年4月13日
Learning Recommender Systems from Multi-Behavior Data
Interpretable Active Learning
Arxiv
3+阅读 · 2018年6月24日
VIP会员
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员