Vision-Language Models (VLMs) are increasingly deployed in public sector missions, necessitating robust evaluation of their safety and vulnerability to adversarial attacks. This paper introduces a novel framework to quantify adversarial risks in VLMs. We analyze model performance under Gaussian, salt-and-pepper, and uniform noise, identifying misclassification thresholds and deriving composite noise patches and saliency patterns that highlight vulnerable regions. These patterns are compared against the Fast Gradient Sign Method (FGSM) to assess their adversarial effectiveness. We propose a new Vulnerability Score that combines the impact of random noise and adversarial attacks, providing a comprehensive metric for evaluating model robustness.
翻译:暂无翻译