Achieving backward compatibility when rolling out new models can highly reduce costs or even bypass feature re-encoding of existing gallery images for in-production visual retrieval systems. Previous related works usually leverage losses used in knowledge distillation which can cause performance degradations or not guarantee compatibility. To address these issues, we propose a general framework called Learning Compatible Embeddings (LCE) which is applicable for both cross model compatibility and compatible training in direct/forward/backward manners. Our compatibility is achieved by aligning class centers between models directly or via a transformation, and restricting more compact intra-class distributions for the new model. Experiments are conducted in extensive scenarios such as changes of training dataset, loss functions, network architectures as well as feature dimensions, and demonstrate that LCE efficiently enables model compatibility with marginal sacrifices of accuracies. The code will be available at https://github.com/IrvingMeng/LCE.


翻译:在推出新模型时实现后向兼容性,可以大大降低成本,甚至绕过功能,为生产中的视觉检索系统重新编码现有画廊图像。以前的有关工作通常会利用知识蒸馏过程中的损失,造成性能退化或不能保证兼容性。为了解决这些问题,我们提议了一个称为“学习兼容嵌入式(LCE)”的一般框架,既适用于跨模型兼容性,也适用于直接/转向/后向方式的兼容性培训。我们的兼容性是通过直接或通过转换将各模型之间的类中心对齐,并限制新模型的较紧凑的阶级内部分布来实现的。实验是在广泛的情景下进行的,例如培训数据集、损失功能、网络结构以及特征层面的变化,并表明LCE能够有效地使模型与边际牺牲的兼容性。该代码将在https://github.com/IrvingMeng/LCE上查阅。

1
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【SIGIR2020】学习词项区分性,Learning Term Discrimination
专知会员服务
15+阅读 · 2020年4月28日
专知会员服务
53+阅读 · 2019年12月22日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年10月1日
Arxiv
0+阅读 · 2021年10月1日
Arxiv
17+阅读 · 2021年2月15日
Arxiv
5+阅读 · 2020年3月26日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
Arxiv
6+阅读 · 2018年12月10日
Arxiv
7+阅读 · 2018年5月23日
Arxiv
3+阅读 · 2018年2月7日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
0+阅读 · 2021年10月1日
Arxiv
0+阅读 · 2021年10月1日
Arxiv
17+阅读 · 2021年2月15日
Arxiv
5+阅读 · 2020年3月26日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
Arxiv
6+阅读 · 2018年12月10日
Arxiv
7+阅读 · 2018年5月23日
Arxiv
3+阅读 · 2018年2月7日
Top
微信扫码咨询专知VIP会员