Motivated by a hemodialysis monitoring study, we propose a logistic model with a functional predictor, called the Sparse Functional Logistic Regression (SFLR), where the corresponding coefficient function is {\it locally sparse}, that is, it is completely zero on some subregions of its domain. The coefficient function, together with the intercept parameter, are estimated through a doubly-penalized likelihood approach with a B-splines expansion. One penalty is for controlling the roughness of the coefficient function estimate and the other penalty, in the form of the $L_1$ norm, enforces the local sparsity. A Newton-Raphson procedure is designed for the optimization of the penalized likelihood. Our simulations show that SFLR is capable of generating a smooth and reasonably good estimate of the coefficient function on the non-null region(s) while recognizing the null region(s). Application of the method to the Raman spectral data generated from the heomdialysis study pinpoint the wavenumber regions for identifying key chemicals contributing to the dialysis progress.


翻译:我们提议了一个具有功能预测器的后勤模型,称为Sprassy 功能物流递减(SFLR),其相应的系数函数是 &it local spreak},也就是说,它在其域的某些分区域是完全零的。系数函数与拦截参数一起,通过一种双倍平均可能性法和B-spline扩展法来估计。一种惩罚是控制系数函数估计的粗略性,其他惩罚,以1美元标准的形式,强制实施当地聚变。一个牛顿-拉夫森程序是为了优化受罚可能性。我们的模拟表明,SFLR能够对非核区域系数函数作出平稳和合理良好的估计,同时承认无核区域。该方法对从透析研究中产生的拉曼光谱数据的应用,确定波数区域,以确定有助于透析进展的关键化学品。

0
下载
关闭预览

相关内容

专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
专知会员服务
162+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Logistic回归第一弹——二项Logistic Regression
机器学习深度学习实战原创交流
3+阅读 · 2015年10月22日
Arxiv
0+阅读 · 2021年8月20日
Arxiv
0+阅读 · 2021年8月20日
Arxiv
0+阅读 · 2021年8月19日
Arxiv
0+阅读 · 2021年8月19日
Arxiv
4+阅读 · 2018年3月14日
VIP会员
相关VIP内容
专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
专知会员服务
162+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Logistic回归第一弹——二项Logistic Regression
机器学习深度学习实战原创交流
3+阅读 · 2015年10月22日
Top
微信扫码咨询专知VIP会员