Motivated by a hemodialysis monitoring study, we propose a logistic model with a functional predictor, called the Sparse Functional Logistic Regression (SFLR), where the corresponding coefficient function is {\it locally sparse}, that is, it is completely zero on some subregions of its domain. The coefficient function, together with the intercept parameter, are estimated through a doubly-penalized likelihood approach with a B-splines expansion. One penalty is for controlling the roughness of the coefficient function estimate and the other penalty, in the form of the $L_1$ norm, enforces the local sparsity. A Newton-Raphson procedure is designed for the optimization of the penalized likelihood. Our simulations show that SFLR is capable of generating a smooth and reasonably good estimate of the coefficient function on the non-null region(s) while recognizing the null region(s). Application of the method to the Raman spectral data generated from the heomdialysis study pinpoint the wavenumber regions for identifying key chemicals contributing to the dialysis progress.
翻译:我们提议了一个具有功能预测器的后勤模型,称为Sprassy 功能物流递减(SFLR),其相应的系数函数是 &it local spreak},也就是说,它在其域的某些分区域是完全零的。系数函数与拦截参数一起,通过一种双倍平均可能性法和B-spline扩展法来估计。一种惩罚是控制系数函数估计的粗略性,其他惩罚,以1美元标准的形式,强制实施当地聚变。一个牛顿-拉夫森程序是为了优化受罚可能性。我们的模拟表明,SFLR能够对非核区域系数函数作出平稳和合理良好的估计,同时承认无核区域。该方法对从透析研究中产生的拉曼光谱数据的应用,确定波数区域,以确定有助于透析进展的关键化学品。