Kernel logistic regression (KLR) is a classical nonlinear classifier in statistical machine learning. Newton method with quadratic convergence rate can solve KLR problem more effectively than the gradient method. However, an obvious limitation of Newton method for training large-scale problems is the $O(n^{3})$ time complexity and $O(n^{2})$ space complexity, where $n$ is the number of training instances. In this paper, we employ the multilevel circulant matrix (MCM) approximate kernel matrix to save in storage space and accelerate the solution of the KLR. Combined with the characteristics of MCM and our ingenious design, we propose an MCM approximate Newton iterative method. We first simplify the Newton direction according to the semi-positivity of the kernel matrix and then perform a two-step approximation of the Newton direction by using MCM. Our method reduces the time complexity of each iteration to $O(n \log n)$ by using the multidimensional fast Fourier transform (mFFT). In addition, the space complexity can be reduced to $O(n)$ due to the built-in periodicity of MCM. Experimental results on some large-scale binary and multi-classification problems show that our method makes KLR scalable for large-scale problems, with less memory consumption, and converges to test accuracy without sacrifice in a shorter time.
翻译:内核后勤回归( KLR) 是典型的统计机器学习的非线性分类( KLR) 。 牛顿法( 牛顿法) 具有二次趋同率可以比梯度法更有效地解决 KLR 问题。 然而, 牛顿法( 牛顿法) 培训大规模问题的一个明显限制是 美元( {{} 3}) 时间复杂性和 美元( {}) 空间复杂度, 即 美元( {} 4} ) 是培训实例的数量。 在本文件中, 我们使用多级环流矩阵( MCMM) 近乎内核质矩阵( MCM), 以节省存储空间, 加速 KLR的解决方案。 此外, 与 MCM 和我们巧妙的设计相结合, 我们提议了 MCM 近于 牛顿 的迭接法 。 我们首先根据内核矩阵的半保质性简化了牛顿方向, 然后通过使用 MCM 将 方向的两步相近近, 通过使用多级的多级变换( MAT ) 的快速变换( ) 。 此外,, 空间复杂性可以降低 和 硬化为大规模的硬化, 质 的 的 的 质 的 的 质的 质的 。