Distributed quantum applications impose requirements on the quality of the quantum states that they consume. When analyzing architecture implementations of quantum hardware, characterizing this quality forms an important factor in understanding their performance. Fundamental characteristics of quantum hardware lead to inherent tradeoffs between the quality of states and traditional performance metrics such as throughput. Furthermore, any real-world implementation of quantum hardware exhibits time-dependent noise that degrades the quality of quantum states over time. Here, we study the performance of two possible architectures for interfacing a quantum processor with a quantum network. The first corresponds to the current experimental state of the art in which the same device functions both as a processor and a network device. The second corresponds to a future architecture that separates these two functions over two distinct devices. We model these architectures as Markov chains and compare their quality of executing quantum operations and producing entangled quantum states as functions of their memory lifetimes, as well as the time that it takes to perform various operations within each architecture. As an illustrative example, we apply our analysis to architectures based on Nitrogen-Vacancy centers in diamond, where we find that for present-day device parameters one architecture is more suited to computation-heavy applications, and the other for network-heavy ones. Besides the detailed study of these architectures, a novel contribution of our work are several formulas that connect an understanding of waiting time distributions to the decay of quantum quality over time for the most common noise models employed in quantum technologies. This provides a valuable new tool for performance evaluation experts, and its applications extend beyond the two architectures studied in this work.


翻译:分配量子应用程序要求它们消费的量子状态的质量。 当分析量子硬件的架构实施时, 定性质量是了解其性能的一个重要因素。 量子硬件的基本特性导致国家质量和传统性能衡量标准( 如吞吐量)之间的内在权衡。 此外, 量子硬件的任何现实世界实施都显示出时间性噪音, 随着时间的推移会降低量子状态的质量。 在这里, 我们研究两种可能将量子处理器与量子网络连接起来的架构的性能。 首先, 与同一设备作为处理器和网络设备运行的艺术的实验性状态相对应。 第二个量子硬件的基本特性导致国家质量质量和传统性能衡量标准之间的内在权衡。 我们将这些结构建模为Markov 链, 比较它们执行量子操作的质量, 并产生量子状态的纠缠在一起, 以及它在每个结构内进行各种操作操作的时间。 举例来说, 我们运用我们的分析将基于Nitrogen- Vacancycreal 的架构扩大了在钻石中运行的模型, 我们发现, 用来将这个常规性模型的精度模型用于 一种常规结构的计算, 一种更适合的 一种常规结构的模型。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月18日
Quantum Computing -- from NISQ to PISQ
Arxiv
1+阅读 · 2022年4月15日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
VIP会员
相关VIP内容
专知会员服务
39+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员