The tremendous success of Deep Learning (DL) has significantly boosted the number of open-sourced DL frameworks hosted on GitHub. Among others, performance and accuracy bugs are critical factors that affect the reputation of these DL frameworks, therefore understanding the practice of discovering and investigating them for DL is important. In this paper, we conduct an exploratory study on the nature of reporting performance and accuracy bugs bugs for DL frameworks, aiming to improve our knowledge on this topic. Our study covers 10 most popular open-sourced DL frameworks on GitHub (e.g., TensorFlow, Keras, and PyTorch), based on which we sample 664 representative performance and accuracy bugs bug reports out of a total population of 22,522. Through systematic analysis of these samples, our key findings are: (1) low speed is the primary reason that a performance bug related report is submitted but we see no consistent pattern for accuracy related ones; (2) most of the reports are about issues encountered in the training stage; (3) only a small proportion of the reports provide insufficient information to investigate; (4) the majority of the performance and accuracy bugs bug reports (from 69% to 100%) are not related to the actual bug or regarded as unclassified; (5) around 50% of the performance and accuracy bug reports, which indeed reveal bugs, are not resolved by direct patches. Deriving from the above, we discuss a set of actionable implications to the researchers, maintainers, and report submitters on this subject. To promote open science, the labeled dataset has been made publicly available at https://tinyurl.com/4x3tap9w.


翻译:Deep Learning (DL) 的巨大成功极大地提升了 GitHub 上托管的开放源码 DL 框架的数量。 除其他外, 性能和准确性错误是影响这些 DL 框架声誉的关键因素, 因此了解为 DL 发现和调查它们的做法非常重要 。 在本文件中, 我们对DL 框架报告性能和准确性错误的性质进行了探索性研究, 目的是提高我们对这个主题的知识。 我们的研究覆盖了 GitHub 上最受欢迎的10个开放源码 DL 框架( 如 TensorFlow、 Keras 和 PyTorch ) 。 基于这些关键因素, 我们抽样调查了这些DL 框架的664 代表性业绩和准确性错误报告, 从而影响了 DL 5 。 通过对这些样本的系统分析, 我们的主要结论是:(1) 低速度是提交与业绩错误相关的报告,但我们看不到准确性能相关的模式; (2) 大部分报告是在培训阶段遇到的问题; (3) 报告中只有一小部分没有提供足够的信息来进行调查; (4) 多数是提交业绩和准确性报告, 而实际报告是在50 % 的准确性报告。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
143+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
98+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
10+阅读 · 2021年11月10日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
126+阅读 · 2020年9月6日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
On Feature Normalization and Data Augmentation
Arxiv
14+阅读 · 2020年2月25日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
143+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
98+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员