We introduce homothetic-BCH codes. These are a family of $q^2$-ary classical codes $\mathcal{C}$ of length $\lambda n_1$, where $\lambda$ and $n_1$ are suitable positive integers such that the punctured code $\mathcal{B}$ of $\mathcal{C}$ in the last $\lambda n_1 - n_1$ coordinates is a narrow-sense BCH code of length $n_1$. We prove that whenever $\mathcal{B}$ is Hermitian self-orthogonal, so is $\mathcal{C}$. As a consequence, we present a procedure to obtain quantum stabilizer codes with lengths than cannot be reached by BCH codes. With this procedure we get new quantum codes according to Grassl's table. To prove our results, we give necessary and sufficient conditions for Hermitian self-orthogonality of BCH codes of a wide range of lengths.
翻译:暂无翻译