State-of-the-art face recognition methods typically take the multi-classification pipeline and adopt the softmax-based loss for optimization. Although these methods have achieved great success, the softmax-based loss has its limitation from the perspective of open set classification: the multi-classification objective in the training phase does not strictly match the objective of open set classification testing. In this paper, we derive a new loss named global boundary CosFace (GB-CosFace). Our GB-CosFace introduces an adaptive global boundary to determine whether two face samples belong to the same identity so that the optimization objective is aligned with the testing process from the perspective of open set classification. Meanwhile, since the loss formulation is derived from the softmax-based loss, our GB-CosFace retains the excellent properties of the softmax-based loss, and CosFace is proved to be a special case of the proposed loss. We analyze and explain the proposed GB-CosFace geometrically. Comprehensive experiments on multiple face recognition benchmarks indicate that the proposed GB-CosFace outperforms current state-of-the-art face recognition losses in mainstream face recognition tasks. Compared to CosFace, our GB-CosFace improves 1.58%, 0.57%, and 0.28% at TAR@FAR=1e-6, 1e-5, 1e-4 on IJB-C benchmark.
翻译:虽然这些方法已经取得了巨大成功,但基于软负损失的表述却从开放的分类的角度来看具有局限性:培训阶段的多分类目标并不严格符合开放的分类测试目标。在本文中,我们得出一个新的损失,名为全球边界脸部(GB-Cosface) 。我们的GB-Cos-6Face引入了一个适应性的全球边界,以确定两个面部样本是否属于同一身份,以便从开放的分类角度使优化目标与测试进程相一致。与此同时,由于损失的表述来自软负损失的损失分类,我们的GB-CosFace在培训阶段的多分类目标与开放的分类测试目标并不完全相符。在拟议的损失中,我们得出了一个名为全球边界脸部(GB-Cface)的新损失,我们分析和解释拟议的I-CFace Face 的几何分数。关于多面识别基准的全面实验表明,拟议的GB-CFace-4ce 超越了开放的测试进程进程。同时,由于基于软负损失的分类,我们的GB-C-C-C-C-GO-B IM IM IM IM IM IM IM 任务中,我们目前对1 5、G-G-B IM-FAR-G-I-G-B 的表面认识的升级 的表面认识的0.1-FAR-ID_ID_ID_G-ID_ID_D_D_B 的确认。