The inherent ambiguity in ground-truth annotations of 3D bounding boxes caused by occlusions, signal missing, or manual annotation errors can confuse deep 3D object detectors during training, thus deteriorating the detection accuracy. However, existing methods overlook such issues to some extent and treat the labels as deterministic. In this paper, we propose GLENet, a generative label uncertainty estimation framework adapted from conditional variational autoencoders, to model the one-to-many relationship between a typical 3D object and its potential ground-truth bounding boxes with latent variables. The label uncertainty generated by GLENet is a plug-and-play module and can be conveniently integrated into existing deep 3D detectors to build probabilistic detectors and supervise the learning of the localization uncertainty. Besides, we propose an uncertainty-aware quality estimator architecture in probabilistic detectors to guide the training of IoU-branch with predicted localization uncertainty. We incorporate the proposed methods into various popular base 3D detectors and observe that their performance is significantly boosted to the current state-of-the-art over the Waymo Open dataset and KITTI dataset.


翻译:3D 封隔、 信号缺失或人工批注错误造成的3D 边框地貌说明的内在模糊性,可能会混淆培训期间的深3D物体探测器,从而降低探测的准确性。但是,现有方法在某种程度上忽略了这些问题,并将标签视为确定性标签。在本文中,我们提议GLENet,这是一个基因化标签的不确定性估计框架,从有条件的变异自动编码器中改制,以模拟典型的3D对象与其潜在变量的潜在地貌框之间的一对多种关系。GLENet产生的标签不确定性是一个插件和游戏模块,可以方便地纳入现有的深3D 探测器,以建立概率探测器并监督对本地化不确定性的学习。此外,我们提议在概率探测器中建立一个不确定性质量估测器结构,以指导对IOU-branch进行预测的本地化不确定性的培训。我们将拟议方法纳入各种流行基3D 探测器,并观察到其性能大大提升到目前对路透数据和KIT 的状态。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年8月25日
Arxiv
0+阅读 · 2022年8月24日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员