The goal of Adaptive UIs is to automatically change an interface so that the UI better supports users in their tasks. A core challenge is to infer user intent from user input and chose adaptations accordingly. Designing effective online UI adaptations is challenging because it relies on tediously hand-crafted rules or carefully collected, high-quality user data. To overcome these challenges, we formulate UI adaptation as a multi-agent reinforcement learning problem. In our formulation, a user agent learns to interact with a UI to complete a task. Simultaneously, an interface agent learns UI adaptations to maximize the user agent's performance. The interface agent is agnostic to the goal. It learns the task structure from the behavior of the user agent and based on that can support the user agent in completing its task. We show that our approach leads to a significant reduction in necessary number of actions on a photo editing task in silico. Furthermore, our user studies demonstrate the generalization capabilities of our interface agent from a simulated user agent to real users.
翻译:适应性用户界面的目标是自动改变界面,使用户界面更好地支持用户执行任务。核心挑战是如何从用户输入中推断用户意向,并相应选择调整。设计有效的在线用户界面调整具有挑战性,因为它依赖于精巧的手工操作规则或精心收集的高质量用户数据。为了克服这些挑战,我们把用户界面调整作为多剂强化学习问题。在我们的配方中,用户代理商学会与用户界面互动以完成一项任务。同时,接口代理商学习用户界面调整以最大限度地提高用户代理商的性能。界面代理商对目标具有知觉性。它从用户代理商的行为中学习任务结构,并以此为基础支持用户代理商完成任务。我们表明,我们的方法导致在硅科的图片编辑任务方面必要行动的数量大幅减少。此外,我们的用户研究显示我们的界面代理商从模拟用户代理商到真实用户的通用能力。