The Barab\'asi-Albert model is a popular scheme for creating scale-free graphs but has been previously shown to have ambiguities in its definition. In this paper we discuss a new ambiguity in the definition of the BA model by identifying the tight relation between the preferential attachment process and unequal probability random sampling. While the probability that each individual vertex is selected is set to be proportional to their degree, the model does not specify the joint probabilities that any tuple of $m$ vertices is selected together for $m>1$. We demonstrate the consequences using analytical, experimental, and empirical analyses and propose a concise definition of the model that addresses this ambiguity. Using the connection with unequal probability random sampling, we also highlight a confusion about the process via which nodes are selected on each time step, for which -- despite being implicitly indicated in the original paper -- current literature appears fragmented.


翻译:Barab\'asi-Albert 模型是创建无比例尺图的流行方案,但以前曾显示其定义含糊不清。 在本文中,我们讨论BA模型定义的新的模糊之处,方法是确定优惠附加程序与概率随机抽样之间密切的关系。虽然选择每个顶点的概率被确定与其程度成正比,但该模型没有具体说明任何数额为百万美元的脊椎一起为$>1美元所选择的共同概率。我们用分析、实验和实证分析来说明其后果,并提出处理这种模糊的模型的简明定义。我们利用与不平等概率随机抽样的关联,我们还强调了对每个步骤选择节点的过程的混乱,尽管原始文件暗地指出,但目前文献似乎支离破碎。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
114+阅读 · 2020年10月8日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【TED】同情心的进化论
英语演讲视频每日一推
3+阅读 · 2017年8月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
A Graph Auto-Encoder for Attributed Network Embedding
Arxiv
3+阅读 · 2018年2月24日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【TED】同情心的进化论
英语演讲视频每日一推
3+阅读 · 2017年8月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员