This paper rigorously and concisely defines, in the context of our (Elementary) Mathematical Data Model ((E)MDM), the mathematical concepts of self-map, compound mapping, totality, one-to-oneness, non-primeness, ontoness, bijectivity, default value, (null-)reflexivity, irreflexivity, (null-)symmetry, asymmetry, (null-)idempotency, anti-idempotency, (null-)equivalence, acyclicity, (null-)representative system mapping, the properties that relate them, and the corresponding corollaries on the coherence and minimality of sets made of such mapping properties viewed as database constraints. Its main contribution is the pseudocode algorithm used by MatBase, our intelligent database management system prototype based on both (E)MDM, the relational, and the entity-relationship data models, for enforcing self-map, atomic, and compound mapping constraint sets. We prove that this algorithm guarantees the satisfiability, coherence, and minimality of such sets, while being very fast, solid, complete, and minimal. In the sequel, we also presented the relevant MatBase user interface as well as the tables of its metacatalog used by this algorithm.
翻译:暂无翻译