We revisit the following problem: given a set of indices $S = \{1, \dots, n\}$ and weights $w_1, \dots, w_n \in \mathbb{R}_{> 0}$, provide samples from $S$ with distribution $p(i) = w_i / W$ where $W = \sum_j w_j$ gives the proper normalization. In the static setting, there is a simple data structure due to Walker called Alias Table that allows for samples to be drawn in constant time. A more challenging task is to maintain the distribution in a dynamic setting, where elements may be added or removed, or weights may change over time; here, existing solutions restrict the permissible weights, require rebuilding of the associated data structure after a number of updates, or are rather complex. In this paper, we describe, analyze, and engineer a simple data structure for maintaining a discrete probability distribution in the dynamic setting. Construction of the data structure for an arbitrary distribution takes time $O(n)$, sampling takes expected time $O(1)$, and updates of size $\Delta = O(W / n)$ can be processed in time $O(1)$. To evaluate the efficiency of the data structure we conduct an experimental study. The results suggest that the dynamic sampling performance is comparable to the static Alias Table with a minor slowdown.


翻译:我们重新研究以下问题:如果有一套指数(US)= ⁇ 1,\dots, n_美元和重量($w_1,\dots,\dots, w_n_n@in\mathbb{R ⁇ 0}$美元),我们从美元和美元中提供样本(US)= w_i/W$(W)= w_i)/W$(W) = sum_j_j_j美元,从而实现适当的正常化。在静态环境中,由于沃克称为Alias表格,有一个简单的数据结构,允许在固定时间里采集样本。更具有挑战性的任务是维持动态环境中的分布,在动态环境中可以添加或删除元素的分布,在动态环境中可以添加或删除元素,或者重量可能随时间变化而变化;在这里,现有的解决方案限制了允许的重量,需要经过一些更新后重建相关的数据结构。在本文件中,我们描述、分析和设计一个简单的数据结构,以保持动态环境中的离散概率分布。为任意分布的数据结构的建造需要时间(n),取样需要预期的时间(1美元(1美元),而要花一定的时间(1美元),或者1美元,或更新一个比小的时间,可以进行一个可比较的图像结构。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员