Large language models are able to learn new tasks in context, where they are provided with instructions and a few annotated examples. However, the effectiveness of in-context learning is dependent to the provided context, and the performance on a downstream task can vary a lot depending on the instruction. Importantly, such dependency on the context can happen in unpredictable ways, e.g., a seemingly more informative instruction might lead to a worse performance. In this paper, we propose an alternative approach, which we term in-context probing. Similar to in-context learning, we contextualize the representation of the input with an instruction, but instead of decoding the output prediction, we probe the contextualized representation to predict the label. Through a series of experiments on a diverse set of classification tasks, we show that in-context probing is significantly more robust to changes in instructions. We further show that probing can be particularly helpful to build classifiers on top of smaller models, and with only a hundred training examples.
翻译:暂无翻译