项目名称: 基于能量变分导数的偏微分方程的时空自适应方法

项目编号: No.11271048

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 张争茹

作者单位: 北京师范大学

项目金额: 50万元

中文摘要: 在材料科学中很多的数学模型是基于某种能量泛函的变分问题而建立的偏微分方程,例如Cahn-Hilliard相场模型,相场晶体模型,分子束外延模型等。这类问题有些共同的特点:在初始阶段能量下降比较快,然后逐渐变得下降缓慢直至最后达到稳定状态;状态变量需要经过很长时间的发展才能达到最后的稳定状态;局部具有奇性或者几乎奇异的结构可能会出现,其中可能出现复杂形状的界面。为此本项目将对时间步长和空间网格分布提出自适应算法,在时间上根据相应的能量泛函关于时间的变化率自动生成合适的时间步长,这样既能抓住迅速变化的中间过程又能准确得到最后的稳定状态,可以在保持计算精度的同时提高计算效率。在空间上,我们根据解的奇异情况来分布网格点,在奇性大的地方聚集相对较多的网格点,在其他解比较光滑的地方分布较少的网格点,这样可以用有限的网格点实现最合理的分布,时间和空间上的自适应方法相结合,必定会大大提高计算效率。

中文关键词: 能量泛函;能量稳定;变分导数;自适应;控制函数

英文摘要: Many partial differential equations arising from material science are based on the variational derivative of some energy functionals, for example, Cahn-Hilliard phase field equation, phase field crystal model, molecular beam epitaxy model. These models have some common features: the energy decays quickly at early stage and decays slowly at later stage; it takes extremely long time to reach steady state; singular or nearly singular solution may be developed, especially, complex interface may be formed. Motivated by these observation, we will propose numerical algorithms which are adaptive on both space and time. The time steps are determined based on the energy variation with respect to time. If the energy decays quickly, small time steps are generated, while large time steps may be used when energy decays slowly. With the adaptive time steps, both the steady state and the dynamical solution can be simulated with almost no loss of accuracy。In space discretization, adaptive moving mesh method is very effective in simulating this kind of model which may develop singular or nearly singular solutions, precisously, less grid points are distributed in the smoooth region while more grid points are used in the region with large solution variation. With the combination of space and time adaptivity, the computational ef

英文关键词: energy functional;energy stable;variational derivative;adaptivity;monitor function

成为VIP会员查看完整内容
1

相关内容

专知会员服务
18+阅读 · 2021年8月15日
专知会员服务
11+阅读 · 2021年7月4日
【CVPR2021】现实世界域泛化的自适应方法
专知会员服务
55+阅读 · 2021年3月31日
专知会员服务
15+阅读 · 2021年3月4日
专知会员服务
108+阅读 · 2020年12月22日
专知会员服务
73+阅读 · 2020年12月7日
专知会员服务
45+阅读 · 2020年11月13日
梯度下降(Gradient Descent)的收敛性分析
PaperWeekly
2+阅读 · 2022年3月10日
正则化方法小结
极市平台
2+阅读 · 2021年11月24日
两概率分布交叉熵的最小值是多少?
PaperWeekly
0+阅读 · 2021年11月6日
经典重温:卡尔曼滤波器介绍与理论分析
极市平台
0+阅读 · 2021年10月25日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
40+阅读 · 2019年8月9日
【AGV】仓库内多AGV协作的全局路径规划算法的研究
产业智能官
27+阅读 · 2018年11月10日
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Max-Margin Contrastive Learning
Arxiv
17+阅读 · 2021年12月21日
Arxiv
16+阅读 · 2020年5月20日
Deformable Style Transfer
Arxiv
14+阅读 · 2020年3月24日
小贴士
相关VIP内容
专知会员服务
18+阅读 · 2021年8月15日
专知会员服务
11+阅读 · 2021年7月4日
【CVPR2021】现实世界域泛化的自适应方法
专知会员服务
55+阅读 · 2021年3月31日
专知会员服务
15+阅读 · 2021年3月4日
专知会员服务
108+阅读 · 2020年12月22日
专知会员服务
73+阅读 · 2020年12月7日
专知会员服务
45+阅读 · 2020年11月13日
相关资讯
梯度下降(Gradient Descent)的收敛性分析
PaperWeekly
2+阅读 · 2022年3月10日
正则化方法小结
极市平台
2+阅读 · 2021年11月24日
两概率分布交叉熵的最小值是多少?
PaperWeekly
0+阅读 · 2021年11月6日
经典重温:卡尔曼滤波器介绍与理论分析
极市平台
0+阅读 · 2021年10月25日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
40+阅读 · 2019年8月9日
【AGV】仓库内多AGV协作的全局路径规划算法的研究
产业智能官
27+阅读 · 2018年11月10日
相关基金
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
相关论文
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Max-Margin Contrastive Learning
Arxiv
17+阅读 · 2021年12月21日
Arxiv
16+阅读 · 2020年5月20日
Deformable Style Transfer
Arxiv
14+阅读 · 2020年3月24日
微信扫码咨询专知VIP会员