In this paper, we study the boomerang spectrum of the power mapping $F(x)=x^{k(q-1)}$ over ${\mathbb F}_{q^2}$, where $q=p^m$, $p$ is a prime, $m$ is a positive integer and $\gcd(k,q+1)=1$. We first determine the differential spectrum of $F(x)$ and show that $F(x)$ is locally-APN. This extends a result of [IEEE Trans. Inf. Theory 57(12):8127-8137, 2011] from $(p,k)=(2,1)$ to general $(p,k)$. We then determine the boomerang spectrum of $F(x)$ by making use of its differential spectrum, which shows that the boomerang uniformity of $F(x)$ is 4 if $p=2$ and $m$ is odd and otherwise it is 2. Our results not only generalize the results in [Des. Codes Cryptogr. 89:2627-2636, 2021] and [arXiv:2203.00485, 2022] but also extend the example $x^{45}$ over ${\mathbb F}_{2^8}$ in [Des. Codes Cryptogr. 89:2627-2636, 2021] into an infinite class of power mappings with boomerang uniformity 2.
翻译:在本文中,我们研究了以F(x)=xxk(q-1)=x*k(q-1)}美元显示的电源映射频谱 $F(x)=x克(q-1)=美元,美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元= =美元=美元=美元=美元=美元=美元=美元=美元=美元=5=57(IEEEEETE Transtrans:我们的结果不仅限于将(Cecapcolptogril)=Crypgr.