Very recently, the first mathematical runtime analyses for the NSGA-II, the most common multi-objective evolutionary algorithm, have been conducted (Zheng, Liu, Doerr (AAAI 2022)). Continuing this research direction, we prove that the NSGA-II optimizes the OneJumpZeroJump benchmark asymptotically faster when crossover is employed. This is the first time such an advantage of crossover is proven for the NSGA-II. Our arguments can be transferred to single-objective optimization. They then prove that crossover can speed-up the $(\mu+1)$ genetic algorithm in a different way and more pronounced than known before. Our experiments confirm the added value of crossover and show that the observed speed-ups are even larger than what our proofs can guarantee.
翻译:最近,为第二代NSGA(最常见的多客观进化算法)进行了第一次数学运行时间分析(郑、刘、道尔(AAAI 2022) )。 继续这一研究方向,我们证明第二代NSGA(II)在使用交叉重叠时,将“一个JumpZeroJump”基准优化为零跳板,且速度缓慢。这是第一次为第二代NSGA(II)证明交叉交叉的好处。我们的论点可以转移到单一目标优化。 然后,它们证明交叉可以以不同的方式加速(=mu+1)$的遗传算法,比以前已知的要显著得多。 我们的实验证实了交叉重叠的增加值,并表明所观察到的超速率甚至比我们所证明的要大。