COVID-19 is a new pathogen that first appeared in the human population at the end of 2019, and it can lead to novel variants of pneumonia after infection. COVID-19 is a rapidly spreading infectious disease that infects humans faster. Therefore, efficient diagnostic systems may accurately identify infected patients and thus help control their spread. In this regard, a new two-stage analysis framework is developed to analyze minute irregularities of COVID-19 infection. A novel detection Convolutional Neural Network (CNN), STM-BRNet, is developed that incorporates the Split-Transform-Merge (STM) block and channel boosting (CB) to identify COVID-19 infected CT slices in the first stage. Each STM block extracts boundary and region-smoothing-specific features for COVID-19 infection detection. Moreover, the various boosted channels are obtained by introducing the new CB and Transfer Learning (TL) concept in STM blocks to capture small illumination and texture variations of COVID-19-specific images. The COVID-19 CTs are provided with new SA-CB-BRSeg segmentation CNN for delineating infection in images in the second stage. SA-CB-BRSeg methodically utilized smoothening and heterogeneous operations in the encoder and decoder to capture simultaneously COVID-19 specific patterns that are region homogeneity, texture variation, and boundaries. Additionally, the new CB concept is introduced in the decoder of SA-CB-BRSeg by combining additional channels using TL to learn the low contrast region. The proposed STM-BRNet and SA-CB-BRSeg yield considerable achievement in accuracy: 98.01 %, Recall: 98.12%, F-score: 98.11%, and Dice Similarity: 96.396%, IOU: 98.845 % for the COVID-19 infectious region, respectively. The proposed two-stage framework significantly increased performance compared to single-phase and other reported systems and reduced the burden on the radiologists.


翻译:COVID-19 是一种新型的病原体,在2019年底人类首次出现,在96个人群中,这种病原体为98个。 它可能导致在感染后出现新型的肺炎变异。COVID-19是一种迅速传播的传染性疾病,对人体造成更快的感染。因此,高效的诊断系统可以准确地识别受感染的病人,从而帮助控制其传播。在这方面,正在开发一个新的两阶段分析框架,以分析COVID-19感染的轻微违规现象。正在开发一个新的检测动态神经网络网络(CNN),STM-19网络,它包括 Slift-Traform-Meg(STM) 块和频道推进(CBB),以识别第一阶段的COVID-19感染的CT切片。

0
下载
关闭预览

相关内容

【MIT-AI+医学课程】面向生命科学的深度学习课程
专知会员服务
47+阅读 · 2022年4月17日
最新《Transformers模型》教程,64页ppt
专知会员服务
305+阅读 · 2020年11月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月28日
Arxiv
0+阅读 · 2023年3月26日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关VIP内容
【MIT-AI+医学课程】面向生命科学的深度学习课程
专知会员服务
47+阅读 · 2022年4月17日
最新《Transformers模型》教程,64页ppt
专知会员服务
305+阅读 · 2020年11月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员