Spiking Neural Networks (SNNs) use discrete spike sequences to transmit information, which significantly mimics the information transmission of the brain. Although this binarized form of representation dramatically enhances the energy efficiency and robustness of SNNs, it also leaves a large gap between the performance of SNNs and Artificial Neural Networks based on real values. There are many different spike patterns in the brain, and the dynamic synergy of these spike patterns greatly enriches the representation capability. Inspired by spike patterns in biological neurons, this paper introduces the dynamic Burst pattern and designs the Leaky Integrate and Fire or Burst (LIFB) neuron that can make a trade-off between short-time performance and dynamic temporal performance from the perspective of network information capacity. LIFB neuron exhibits three modes, resting, Regular spike, and Burst spike. The burst density of the neuron can be adaptively adjusted, which significantly enriches the characterization capability. We also propose a decoupling method that can losslessly decouple LIFB neurons into equivalent LIF neurons, which demonstrates that LIFB neurons can be efficiently implemented on neuromorphic hardware. We conducted experiments on the static datasets CIFAR10, CIFAR100, and ImageNet, which showed that we greatly improved the performance of the SNNs while significantly reducing the network latency. We also conducted experiments on neuromorphic datasets DVS-CIFAR10 and NCALTECH101 and showed that we achieved state-of-the-art with a small network structure.


翻译:Spik神经网络(SNNS)使用离散的峰值序列来传递信息,这在很大程度上模仿了大脑的信息传输。虽然这种二进制的演示形式极大地提高了SNNS的能效和稳健性能,但它也给SNNS的性能和基于真实价值的人工神经网络的性能留下了巨大的差距。大脑中有许多不同的峰值模式,这些峰值模式的动态协同效应极大地丰富了代表能力。在生物神经突变模式的启发下,本文介绍了动态勃斯特模式,并设计了Leaky集成和Fir或Burst(LIFB)神经(LIFB)神经模型,从网络信息能力的角度来看,这可以使短期性性性能和动态时间性能之间发生交换。LIFB神经网络展示了三种模式,即休息、定期性峰值和勃勃勃勃的神经网络。神经网络的爆发性能可以大大地调整,从而大大地丰富了特征能力。我们提出了一种分解方法,可以将LIFB神经网络的神经网络变成相应的神经系统,同时展示了我们的神经系统。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
115+阅读 · 2022年4月21日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员