Traditional statistical retrieval models often treat each document as a whole. In many cases, however, a document is relevant to a query only because a small part of it contain the targeted information. In this work, we propose a neural passage model (NPM) that uses passage-level information to improve the performance of ad-hoc retrieval. Instead of using a single window to extract passages, our model automatically learns to weight passages with different granularities in the training process. We show that the passage-based document ranking paradigm from previous studies can be directly derived from our neural framework. Also, our experiments on a TREC collection showed that the NPM can significantly outperform the existing passage-based retrieval models.
翻译:传统的统计检索模型通常将每个文件作为一个整体处理,但在许多情况下,文件与查询有关,只是因为其中一小部分载有有针对性的信息。在这项工作中,我们提议一个神经通过模型(NPM),使用通过级别信息来改进临时检索的性能。我们的模式不是使用单一窗口来提取段落,而是在培训过程中用不同的微粒来自动学习加权通过。我们表明,从以往研究中得出的基于通过的文件排名模式可以直接来自我们的神经框架。此外,我们对TREC收集的实验表明,国家预防机制可以大大超过现有的基于通过的数据的检索模式。