Human affect and mental state estimation in an automated manner, face a number of difficulties, including learning from labels with poor or no temporal resolution, learning from few datasets with little data (often due to confidentiality constraints) and, (very) long, in-the-wild videos. For these reasons, deep learning methodologies tend to overfit, that is, arrive at latent representations with poor generalisation performance on the final regression task. To overcome this, in this work, we introduce two complementary contributions. First, we introduce a novel relational loss for multilabel regression and ordinal problems that regularises learning and leads to better generalisation. The proposed loss uses label vector inter-relational information to learn better latent representations by aligning batch label distances to the distances in the latent feature space. Second, we utilise a two-stage attention architecture that estimates a target for each clip by using features from the neighbouring clips as temporal context. We evaluate the proposed methodology on both continuous affect and schizophrenia severity estimation problems, as there are methodological and contextual parallels between the two. Experimental results demonstrate that the proposed methodology outperforms all baselines. In the domain of schizophrenia, the proposed methodology outperforms previous state-of-the-art by a large margin, achieving a PCC of up to 78% performance close to that of human experts (85%) and much higher than previous works (uplift of up to 40%). In the case of affect recognition, we outperform previous vision-based methods in terms of CCC on both the OMG and the AMIGOS datasets. Specifically for AMIGOS, we outperform previous SoTA CCC for both arousal and valence by 9% and 13% respectively, and in the OMG dataset we outperform previous vision works by up to 5% for both arousal and valence.
翻译:由于这些原因,深层次的学习方法往往过于适合,也就是说,在最终回归任务中,我们引入了两种互补作用。首先,我们引入了多标签回归和或无时间分辨率的奥氏度问题的新关系损失,这些标签使得学习更加正常,并导致更好的概括化。拟议的损失使用少量数据(通常由于保密限制)从少数数据集学习,以及(非常)长期的动态视频。由于这些原因,深层次的学习方法往往在最终回归任务中过于适合,也就是说,由于在最终回归任务中,在潜在概括性表现表现不佳,从而形成潜在的表现。为了克服这一点,我们在这项工作中,我们引入了两种互补的贡献。首先,我们引入了多标签回归和或无时间分辨率问题的新出现关系损失,从而使得学习更加普遍化。拟议的矢量间关系信息通过将批量标签距离与潜在特征空间的距离相匹配来学习更好的潜在表现。第二,我们采用了一个两阶段关注结构,即利用邻近的剪辑的特征来估算每段的目标。我们用连续影响和精神分裂强度估计问题的拟议方法,因为这两种方法在方法和背景上两个阶段之间都有。实验结果显示着所有基线。在我们提出的方法上比基线上,在前一个基线上,在以前的亚氏-直位数据中,在前的轨道上,在前的轨道上,从以前的缩缩缩算法中,在前的轨道上,从以前的直向上,在前的轨道上,在前的轨道上,在上,在前一个直向上,在前的轨道上,在前的轨道上,在前的轨道上,在前的轨道上,在前的轨道上,在前的轨道上,在上,在前的轨道上,在前的轨道上,在前的轨道上,在上,在前的轨道上,在前的轨道上,在上,在上,在上,在上,在上,在上,在上,在上,在上,在上,在上,在上,直向上,在上,在上,在上,在上,在上,在上,在上,在上,在上,在上,在上,在上,在上,在上,在上,在上,在上,在上,在上,在上,在上,在上,在