This paper introduces a novel probabilistic forecasting technique called Smoothing Quantile Regression Averaging (SQRA). It combines Quantile Regression Averaging - a well performing load and price forecasting approach - with kernel estimation to improve the reliability of the estimates. Three variants of SQRA are evaluated across datasets from four power markets and compared against well-established benchmarks. Empirical evidence indicates superior predictive performance of the method in terms of the Kupiec test, the pinball score, and the conditional predictive accuracy test. Moreover, considering a day-ahead market trading strategy that utilizes probabilistic price predictions and battery storage, the study shows that profits of up to 9 EUR per 1 MW traded can be achieved when forecasts are generated using SQRA.
翻译:本文介绍了一种新型的概率预测技术,称为“平滑量回归率预测法 ” ( SQRA),它把“量回归率预测法”(一种表现良好的负载和价格预测方法)与内核估计结合起来,以提高估计数的可靠性。SQRA的三种变种在四个电力市场的数据组之间进行了评估,并与既定基准进行比较。经验性证据表明,在Kupiec测试、弹球评分和有条件预测准确性测试方面,该方法的预测性表现优异。此外,考虑到利用概率性价格预测和电池储存的日头市场交易战略,研究显示,在利用SQRA产生预测时,每1兆瓦交易的利润可达9欧元。