We develop a novel Markov chain Monte Carlo (MCMC) method that exploits a hierarchy of models of increasing complexity to efficiently generate samples from an unnormalized target distribution. Broadly, the method rewrites the Multilevel MCMC approach of Dodwell et al. (2015) in terms of the Delayed Acceptance (DA) MCMC of Christen & Fox (2005). In particular, DA is extended to use a hierarchy of models of arbitrary depth, and allow subchains of arbitrary length. We show that the algorithm satisfies detailed balance, hence is ergodic for the target distribution. Furthermore, multilevel variance reduction is derived that exploits the multiple levels and subchains, and an adaptive multilevel correction to coarse-level biases is developed. Three numerical examples of Bayesian inverse problems are presented that demonstrate the advantages of these novel methods. The software and examples are available in PyMC3.
翻译:我们开发了一种新型的Markov链条Monte Carlo(MCMC)方法,该方法利用越来越复杂的模型等级,从未规范的目标分布中有效生成样本。广义而言,该方法重写了Dodwell等人(2015年)在延迟接受(DA) MCMC(Christen & Fox) (2005年) 的多层次MC(MC) 方法。特别是,DA扩展至使用任意深度模型的等级,并允许任意长度的子链。我们显示算法满足了详细平衡,因此是目标分布的异种。此外,多层次差异减少是利用多层次和次链的结果,对粗劣的偏差进行了适应性的多层次修正。提出了三个巴伊斯反面问题的例子,这些例子显示了这些新方法的优点。这些软件和实例可以在PyMC3中找到。