Deep Metric Learning (DML) is helpful in computer vision tasks. In this paper, we firstly introduce DML into image co-segmentation. We propose a novel Triplet loss for Image Segmentation, called IS-Triplet loss for short, and combine it with traditional image segmentation loss. Different from the general DML task which learns the metric between pictures, we treat each pixel as a sample, and use their embedded features in high-dimensional space to form triples, then we tend to force the distance between pixels of different categories greater than of the same category by optimizing IS-Triplet loss so that the pixels from different categories are easier to be distinguished in the high-dimensional feature space. We further present an efficient triple sampling strategy to make a feasible computation of IS-Triplet loss. Finally, the IS-Triplet loss is combined with 3 traditional image segmentation losses to perform image segmentation. We apply the proposed approach to image co-segmentation and test it on the SBCoseg dataset and the Internet dataset. The experimental result shows that our approach can effectively improve the discrimination of pixels' categories in high-dimensional space and thus help traditional loss achieve better performance of image segmentation with fewer training epochs.


翻译:深米学习( DML) 有助于计算机的视觉任务 。 在本文中, 我们首先将 DML 引入图像共分层 。 我们提议对图像分层进行新的三重损失, 简称IS- Triplet 短期损失, 并将其与传统图像分层损失结合起来。 不同于 DML 的一般任务, 该任务是学习图像之间的测量, 我们把每个像素作为样本处理, 并使用其在高空空间的嵌入特性形成三重分层, 然后我们倾向于通过优化 IS- Triplet 损失来强制不同类别像素之间的距离, 以便不同类别的像素更容易在高维特征空间进行区分。 我们进一步提出高效的三重抽样战略, 以可行的方式计算 IS- Triplet 损失。 最后, IS- Triplet 损失与 3 个传统图像分层损失相结合, 以进行图像分层。 我们将拟议的方法应用于图像的共分层和测试 SBCoseg 数据集和互联网数据集。 实验结果显示, 我们的方法可以有效地改善高维图像分层的功能, 。

0
下载
关闭预览

相关内容

图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。它是由图像处理到图像分析的关键步骤。 所谓图像分割指的是根据灰度、颜色、纹理和形状等特征把图像划分成若干互不交迭的区域,并使这些特征在同一区域内呈现出相似性,而在不同区域间呈现出明显的差异性。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【SIGIR2020】学习词项区分性,Learning Term Discrimination
专知会员服务
15+阅读 · 2020年4月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Cross-Modal & Metric Learning 跨模态检索专题-2
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Arxiv
8+阅读 · 2018年5月15日
VIP会员
相关VIP内容
【SIGIR2020】学习词项区分性,Learning Term Discrimination
专知会员服务
15+阅读 · 2020年4月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Top
微信扫码咨询专知VIP会员