The discretisation of boundary integral equations for the scalar Helmholtz equation leads to large dense linear systems. Efficient boundary element methods (BEM), such as the fast multipole method (FMM) and $\Hmat$ based methods, focus on structured low-rank approximations of subblocks in these systems. It is known that the ranks of these subblocks increase linearly with the wavenumber. We explore a data-sparse representation of BEM-matrices valid for a range of frequencies, based on extracting the known phase of the Green's function. Algebraically, this leads to a Hadamard product of a frequency matrix with an $\Hmat$. We show that the frequency dependency of this $\Hmat$ can be determined using a small number of frequency samples, even for geometrically complex three-dimensional scattering obstacles. We describe an efficient construction of the representation by combining adaptive cross approximation with adaptive rational approximation in the continuous frequency dimension. We show that our data-sparse representation allows to efficiently sample the full BEM-matrix at any given frequency, and as such it may be useful as part of an efficient sweeping routine.


翻译:用于 scalar Helmholtz 等方程式的边界分解组合方程式分解导致大量稠密线性系统。 有效的边界要素方法(BEM),例如快速多极法和以美元为基数的方法,侧重于这些系统中小区块的结构性低位近似值。 已知这些小区块的等级随着波数而线性地增加。 我们探索一个数据偏差的BEM- 矩阵表示法,该表示法在提取已知的绿色功能阶段的基础上对一系列频率有效。 代数上,这导致以美元为基数的频率矩阵生成一个Hadmard产品。 我们显示,即使对几何复杂的三维散射障碍而言,也可以使用少量的频率样本确定美元/ Hmat$的频率依赖度。 我们描述了一个高效的表示法, 将适应性交叉比对准和适应性合理近度的合理比值结合在连续频率层面。 我们显示, 我们的数据偏差代表法能够有效地在任何给定的频率上对全BEM-matrix进行取样, 可能是高效的常规。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
76+阅读 · 2021年3月16日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
CVPR2019| 05-20更新17篇点云相关论文及代码合集
极市平台
23+阅读 · 2019年5月20日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月12日
VIP会员
相关资讯
CVPR2019| 05-20更新17篇点云相关论文及代码合集
极市平台
23+阅读 · 2019年5月20日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员