We study sparse linear regression over a network of agents, modeled as an undirected graph (with no centralized node). The estimation problem is formulated as the minimization of the sum of the local LASSO loss functions plus a quadratic penalty of the consensus constraint -- the latter being instrumental to obtain distributed solution methods. While penalty-based consensus methods have been extensively studied in the optimization literature, their statistical and computational guarantees in the high dimensional setting remain unclear. This work provides an answer to this open problem. Our contribution is two-fold. First, we establish statistical consistency of the estimator: under a suitable choice of the penalty parameter, the optimal solution of the penalized problem achieves near optimal minimax rate $\mathcal{O}(s \log d/N)$ in $\ell_2$-loss, where $s$ is the sparsity value, $d$ is the ambient dimension, and $N$ is the total sample size in the network -- this matches centralized sample rates. Second, we show that the proximal-gradient algorithm applied to the penalized problem, which naturally leads to distributed implementations, converges linearly up to a tolerance of the order of the centralized statistical error -- the rate scales as $\mathcal{O}(d)$, revealing an unavoidable speed-accuracy dilemma.Numerical results demonstrate the tightness of the derived sample rate and convergence rate scalings.


翻译:我们研究一个代理商网络的细线性回归,以非方向图(没有中央节点)为模型。估计问题在于尽量减少当地LASSO损失函数的总和,加上协商一致制约的四角罚款 -- -- 后者有助于获得分布式解决方案方法。虽然在优化文献中广泛研究了基于惩罚的协商一致方法,但在高维环境中,它们的统计和计算保障仍然不明确。这项工作为这一开放问题的答案提供了答案。我们的贡献是双重的。首先,我们建立了估计值的统计一致性:在适当选择刑罚参数的情况下,受处罚问题的最佳解决办法达到接近最优的迷你税率$\mathcal{O}(s\log d/N) 和以$_2美元计算损失,其中美元是紧张值值值,美元是环境层面,美元是网络的总样本规模 -- -- 与集中抽样率相符。第二,我们显示对受处罚问题应用的准度比重算法,这自然导致最接近最优的最小的缩缩略度率,即中央统计缩缩缩缩度的缩缩缩缩率。

0
下载
关闭预览

相关内容

专知会员服务
62+阅读 · 2021年1月10日
专知会员服务
94+阅读 · 2020年12月8日
专知会员服务
52+阅读 · 2020年9月7日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
105+阅读 · 2020年5月3日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
LibRec 精选:基于参数共享的CNN-RNN混合模型
LibRec智能推荐
6+阅读 · 2019年3月7日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
ERROR: GLEW initalization error: Missing GL version
深度强化学习实验室
9+阅读 · 2018年6月13日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
18+阅读 · 2020年7月13日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
LibRec 精选:基于参数共享的CNN-RNN混合模型
LibRec智能推荐
6+阅读 · 2019年3月7日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
ERROR: GLEW initalization error: Missing GL version
深度强化学习实验室
9+阅读 · 2018年6月13日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员