The Behrens-Fisher Problem is a classical statistical problem. It is to test the equality of the means of two normal populations using two independent samples, when the equality of the population variances is unknown. Linnik (1968) has shown that this problem has no exact fixed-level tests based on the complete sufficient statistics. However, exact conventional solutions based on other statistics and approximate solutions based the complete sufficient statistics do exist. Existing methods are mainly asymptotic tests, and usually don't perform well when the variances or sample sizes differ a lot. In this paper, we propose a new method to find an exact t-test (Te) to solve this classical Behrens-Fisher Problem. Confidence intervals for the difference between two means are provided. We also use detailed analysis to show that Te test reaches the maximum of degree of freedom and to give a weak version of proof that Te test has the shortest confidence interval length expectation. Some simulations are performed to show the advantages of our new proposed method compared to available conventional methods like Welch's test, paired t-test and so on. We will also compare it to unconventional method, like two-stage test.
翻译:Behrens-Fisher问题是一个典型的统计问题。 使用两种独立的样本测试两种正常人口手段的平等性, 人口差异的不平等性未知。 Linnik(1968年)已经表明, 这个问题没有基于完整充分统计数据的精确固定水平测试。 但是, 确实存在基于其他统计的精确常规解决方案和基于完整充足统计数据的近似解决方案。 现有方法主要是无症状测试, 当差异或抽样大小差异很大时, 通常效果不佳 。 在本文中, 我们提出一种新的方法, 找到一种精确的t- 测试( Te) 来解决这个古典的Behrens- Fisher问题。 提供了两种方法之间差异的信任间隔。 我们还使用详细分析来显示Te测试达到最大自由度, 并给出一个薄弱的证明版本, 即 Te 测试具有最短的置信期期望值。 一些模拟是为了显示我们提出的新方法与Welch测试、 配对等现有常规方法相比的优势。 我们还将它与两阶段测试等非常规方法进行比较。