The Behrens-Fisher Problem is a classical statistical problem. It is to test the equality of the means of two normal populations using two independent samples, when the equality of the population variances is unknown. Linnik (1968) has shown that this problem has no exact fixed-level tests based on the complete sufficient statistics. However, exact conventional solutions based on other statistics and approximate solutions based the complete sufficient statistics do exist. Existing methods are mainly asymptotic tests, and usually don't perform well when the variances or sample sizes differ a lot. In this paper, we propose a new method to find an exact t-test (Te) to solve this classical Behrens-Fisher Problem. Confidence intervals for the difference between two means are provided. We also use detailed analysis to show that Te test reaches the maximum of degree of freedom and to give a weak version of proof that Te test has the shortest confidence interval length expectation. Some simulations are performed to show the advantages of our new proposed method compared to available conventional methods like Welch's test, paired t-test and so on. We will also compare it to unconventional method, like two-stage test.


翻译:Behrens-Fisher问题是一个典型的统计问题。 使用两种独立的样本测试两种正常人口手段的平等性, 人口差异的不平等性未知。 Linnik(1968年)已经表明, 这个问题没有基于完整充分统计数据的精确固定水平测试。 但是, 确实存在基于其他统计的精确常规解决方案和基于完整充足统计数据的近似解决方案。 现有方法主要是无症状测试, 当差异或抽样大小差异很大时, 通常效果不佳 。 在本文中, 我们提出一种新的方法, 找到一种精确的t- 测试( Te) 来解决这个古典的Behrens- Fisher问题。 提供了两种方法之间差异的信任间隔。 我们还使用详细分析来显示Te测试达到最大自由度, 并给出一个薄弱的证明版本, 即 Te 测试具有最短的置信期期望值。 一些模拟是为了显示我们提出的新方法与Welch测试、 配对等现有常规方法相比的优势。 我们还将它与两阶段测试等非常规方法进行比较。

0
下载
关闭预览

相关内容

学生t检验(英语:Student's t-test)是指虚无假设成立时的任一检定统计有学生t-分布的统计假说检定,属于母数统计。学生t检验常作为检验一群来自正态分配总体的独立样本之期望值的是否为某一实数,或是二群来自正态分配总体的独立样本之期望值的差是否为某一实数。举个简单的例子,也就是说我们可以在抓取一个班级的男生,去比较该班与全校男生之身高差异程度是不是推测的那样,或是不同年级班上的男生身高的差异的场合是否一如预期使用此检验法。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年1月3日
Arxiv
0+阅读 · 2023年1月3日
Arxiv
0+阅读 · 2023年1月2日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员