Traditional image compression methods aim to reconstruct images for human perception, prioritizing visual fidelity over task relevance. In contrast, Coding for Machines focuses on preserving information essential for automated understanding. Building on this principle, we present an end-to-end compression framework that retains text-specific features for Optical Character Recognition (OCR). The encoder operates at roughly half the computational cost of the OCR module, making it suitable for resource-limited devices. When on-device OCR is infeasible, images can be efficiently compressed and later decoded to recover textual content. Experiments show significant improvements in text extraction accuracy at low bitrates, even outperforming OCR on uncompressed images. We further extend this study to general-purpose encoders, exploring their capacity to preserve hidden semantics under extreme compression. Instead of optimizing for visual fidelity, we examine whether compact, visually degraded representations can retain recoverable meaning through learned enhancement and recognition modules. Results demonstrate that semantic information can persist despite severe compression, bridging text-oriented compression and general-purpose semantic preservation in machine-centered image coding.


翻译:传统图像压缩方法旨在为人类感知重建图像,优先考虑视觉保真度而非任务相关性。相比之下,面向机器的编码则侧重于保留自动化理解所需的关键信息。基于这一原则,我们提出了一种端到端压缩框架,该框架专门为光学字符识别(OCR)任务保留文本特征。编码器的计算成本约为OCR模块的一半,适用于资源受限的设备。当设备端OCR不可行时,图像可被高效压缩并在后续解码以恢复文本内容。实验表明,在低比特率下文本提取准确率有显著提升,甚至优于在未压缩图像上直接进行OCR的性能。我们进一步将此项研究扩展至通用编码器,探索其在极端压缩条件下保留隐藏语义的能力。我们不再以视觉保真度为优化目标,而是探究紧凑且视觉质量退化的表示能否通过学习的增强与识别模块保留可恢复的语义信息。结果表明,即使经过严重压缩,语义信息仍可得以保持,从而在面向机器的图像编码中架起了文本导向压缩与通用语义保持之间的桥梁。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Deep Learning for Generic Object Detection: A Survey
Arxiv
14+阅读 · 2018年9月6日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员