Antenna array calibration is necessary to maintain the high fidelity of beam patterns across a wide range of advanced antenna systems and to ensure channel reciprocity in time division duplexing schemes. Despite the continuous development in this area, most existing solutions are optimised for specific radio architectures, require standardised over-the-air data transmission, or serve as extensions of conventional methods. The diversity of communication protocols and hardware creates a problematic case, since this diversity requires to design or update the calibration procedures for each new advanced antenna system. In this study, we formulate antenna calibration in an alternative way, namely as a task of functional approximation, and address it via Bayesian machine learning. Our contributions are three-fold. Firstly, we define a parameter space, based on near-field measurements, that captures the underlying hardware impairments corresponding to each radiating element, their positional offsets, as well as the mutual coupling effects between antenna elements. Secondly, Gaussian process regression is used to form models from a sparse set of the aforementioned near-field data. Once deployed, the learned non-parametric models effectively serve to continuously transform the beamforming weights of the system, resulting in corrected beam patterns. Lastly, we demonstrate the viability of the described methodology for both digital and analog beamforming antenna arrays of different scales and discuss its further extension to support real-time operation with dynamic hardware impairments.


翻译:天线阵列校准对于保持广泛先进天线系统的光束模式的高度忠实性是必要的,对于确保时差平化机制的频道对等性来说,这是十分必要的。尽管这一领域的持续发展,但大多数现有解决方案都是对特定无线电结构的优化,需要标准化的空中数据传输,或作为常规方法的延伸。通信协议和硬件的多样性造成了一个问题,因为这种多样性要求设计或更新每个新的先进天线系统的校准程序。在本研究中,我们以另一种方式设计天线校准,即功能近似任务,并通过Bayesian机器学习加以解决。我们的贡献有三重。首先,我们根据近地测量确定一个参数空间,根据每个辐射元素、其定位偏差以及天线各元素之间的相互连接效应来捕捉潜在的硬件缺陷。第二,高斯进程回归被用来形成一个模型,从上述近地天线系统的稀少数据集中形成模型。经过学习的非参数模型一旦部署,就有效地帮助不断改变其动态运行模式,根据近地测量的近距离测量,然后用我们所描述的硬度模型来演示最后的模型的变形结构结构结构结构,以进一步展示。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
120+阅读 · 2022年4月21日
最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年3月21日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员