In this paper, we propose a weakly supervised deep temporal encoding-decoding solution for anomaly detection in surveillance videos using multiple instance learning. The proposed approach uses both abnormal and normal video clips during the training phase which is developed in the multiple instance framework where we treat video as a bag and video clips as instances in the bag. Our main contribution lies in the proposed novel approach to consider temporal relations between video instances. We deal with video instances (clips) as a sequential visual data rather than independent instances. We employ a deep temporal and encoder network that is designed to capture spatial-temporal evolution of video instances over time. We also propose a new loss function that is smoother than similar loss functions recently presented in the computer vision literature, and therefore; enjoys faster convergence and improved tolerance to local minima during the training phase. The proposed temporal encoding-decoding approach with modified loss is benchmarked against the state-of-the-art in simulation studies. The results show that the proposed method performs similar to or better than the state-of-the-art solutions for anomaly detection in video surveillance applications.


翻译:在本文中,我们建议采用一种监督不力的深时间编码破码办法,用于利用多实例学习在监视录像中发现异常现象。拟议办法在培训阶段使用异常和正常的视频剪辑,这是在多实例框架中开发的,我们把视频当作袋子和视频剪辑作为实例处理。我们的主要贡献在于拟议的新办法,以考虑视频实例之间的时间关系。我们把视频实例(剪辑)作为连续的视觉数据而不是独立实例处理。我们使用一个深时间和编码网络,目的是捕捉视频实例的时空演变。我们还提议一种新的损失函数,比计算机视觉文献中最近出现的类似损失函数更顺畅,因此;在培训阶段,对本地迷你的趋同和耐受度更快。拟议的与修改损失的脱码方法以模拟研究中的最新技术为基准。结果显示,拟议的方法与视频监视应用中异常现象探测的状态解决方案相似或更好。

0
下载
关闭预览

相关内容

在数据挖掘中,异常检测(英语:anomaly detection)对不符合预期模式或数据集中其他项目的项目、事件或观测值的识别。通常异常项目会转变成银行欺诈、结构缺陷、医疗问题、文本错误等类型的问题。异常也被称为离群值、新奇、噪声、偏差和例外。 特别是在检测滥用与网络入侵时,有趣性对象往往不是罕见对象,但却是超出预料的突发活动。这种模式不遵循通常统计定义中把异常点看作是罕见对象,于是许多异常检测方法(特别是无监督的方法)将对此类数据失效,除非进行了合适的聚集。相反,聚类分析算法可能可以检测出这些模式形成的微聚类。 有三大类异常检测方法。[1] 在假设数据集中大多数实例都是正常的前提下,无监督异常检测方法能通过寻找与其他数据最不匹配的实例来检测出未标记测试数据的异常。监督式异常检测方法需要一个已经被标记“正常”与“异常”的数据集,并涉及到训练分类器(与许多其他的统计分类问题的关键区别是异常检测的内在不均衡性)。半监督式异常检测方法根据一个给定的正常训练数据集创建一个表示正常行为的模型,然后检测由学习模型生成的测试实例的可能性。
专知会员服务
44+阅读 · 2020年10月31日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Relation Networks for Object Detection 论文笔记
统计学习与视觉计算组
16+阅读 · 2018年4月18日
论文浅尝 | Reinforcement Learning for Relation Classification
开放知识图谱
9+阅读 · 2017年12月10日
Arxiv
16+阅读 · 2021年3月2日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年10月31日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Relation Networks for Object Detection 论文笔记
统计学习与视觉计算组
16+阅读 · 2018年4月18日
论文浅尝 | Reinforcement Learning for Relation Classification
开放知识图谱
9+阅读 · 2017年12月10日
Top
微信扫码咨询专知VIP会员